Extensions 1→N→G→Q→1 with N=C23xC3:S3 and Q=C2

Direct product G=NxQ with N=C23xC3:S3 and Q=C2
dρLabelID
C24xC3:S3144C2^4xC3:S3288,1044

Semidirect products G=N:Q with N=C23xC3:S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23xC3:S3):1C2 = C62:8D4φ: C2/C1C2 ⊆ Out C23xC3:S324(C2^3xC3:S3):1C2288,629
(C23xC3:S3):2C2 = C62:12D4φ: C2/C1C2 ⊆ Out C23xC3:S372(C2^3xC3:S3):2C2288,739
(C23xC3:S3):3C2 = C62:13D4φ: C2/C1C2 ⊆ Out C23xC3:S372(C2^3xC3:S3):3C2288,794
(C23xC3:S3):4C2 = C22xC3:D12φ: C2/C1C2 ⊆ Out C23xC3:S348(C2^3xC3:S3):4C2288,974
(C23xC3:S3):5C2 = C2xDic3:D6φ: C2/C1C2 ⊆ Out C23xC3:S324(C2^3xC3:S3):5C2288,977
(C23xC3:S3):6C2 = C22xC12:S3φ: C2/C1C2 ⊆ Out C23xC3:S3144(C2^3xC3:S3):6C2288,1005
(C23xC3:S3):7C2 = C2xD4xC3:S3φ: C2/C1C2 ⊆ Out C23xC3:S372(C2^3xC3:S3):7C2288,1007
(C23xC3:S3):8C2 = C22xC32:7D4φ: C2/C1C2 ⊆ Out C23xC3:S3144(C2^3xC3:S3):8C2288,1017
(C23xC3:S3):9C2 = S32xC23φ: C2/C1C2 ⊆ Out C23xC3:S348(C2^3xC3:S3):9C2288,1040

Non-split extensions G=N.Q with N=C23xC3:S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23xC3:S3).1C2 = C2xC6.D12φ: C2/C1C2 ⊆ Out C23xC3:S348(C2^3xC3:S3).1C2288,611
(C23xC3:S3).2C2 = C62.116C23φ: C2/C1C2 ⊆ Out C23xC3:S324(C2^3xC3:S3).2C2288,622
(C23xC3:S3).3C2 = C22:C4xC3:S3φ: C2/C1C2 ⊆ Out C23xC3:S372(C2^3xC3:S3).3C2288,737
(C23xC3:S3).4C2 = C2xC6.11D12φ: C2/C1C2 ⊆ Out C23xC3:S3144(C2^3xC3:S3).4C2288,784
(C23xC3:S3).5C2 = C2xC62:C4φ: C2/C1C2 ⊆ Out C23xC3:S324(C2^3xC3:S3).5C2288,941
(C23xC3:S3).6C2 = C22xC6.D6φ: C2/C1C2 ⊆ Out C23xC3:S348(C2^3xC3:S3).6C2288,972
(C23xC3:S3).7C2 = C23xC32:C4φ: C2/C1C2 ⊆ Out C23xC3:S348(C2^3xC3:S3).7C2288,1039
(C23xC3:S3).8C2 = C22xC4xC3:S3φ: trivial image144(C2^3xC3:S3).8C2288,1004

׿
x
:
Z
F
o
wr
Q
<