Extensions 1→N→G→Q→1 with N=C23×C3⋊S3 and Q=C2

Direct product G=N×Q with N=C23×C3⋊S3 and Q=C2
dρLabelID
C24×C3⋊S3144C2^4xC3:S3288,1044

Semidirect products G=N:Q with N=C23×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23×C3⋊S3)⋊1C2 = C628D4φ: C2/C1C2 ⊆ Out C23×C3⋊S324(C2^3xC3:S3):1C2288,629
(C23×C3⋊S3)⋊2C2 = C6212D4φ: C2/C1C2 ⊆ Out C23×C3⋊S372(C2^3xC3:S3):2C2288,739
(C23×C3⋊S3)⋊3C2 = C6213D4φ: C2/C1C2 ⊆ Out C23×C3⋊S372(C2^3xC3:S3):3C2288,794
(C23×C3⋊S3)⋊4C2 = C22×C3⋊D12φ: C2/C1C2 ⊆ Out C23×C3⋊S348(C2^3xC3:S3):4C2288,974
(C23×C3⋊S3)⋊5C2 = C2×Dic3⋊D6φ: C2/C1C2 ⊆ Out C23×C3⋊S324(C2^3xC3:S3):5C2288,977
(C23×C3⋊S3)⋊6C2 = C22×C12⋊S3φ: C2/C1C2 ⊆ Out C23×C3⋊S3144(C2^3xC3:S3):6C2288,1005
(C23×C3⋊S3)⋊7C2 = C2×D4×C3⋊S3φ: C2/C1C2 ⊆ Out C23×C3⋊S372(C2^3xC3:S3):7C2288,1007
(C23×C3⋊S3)⋊8C2 = C22×C327D4φ: C2/C1C2 ⊆ Out C23×C3⋊S3144(C2^3xC3:S3):8C2288,1017
(C23×C3⋊S3)⋊9C2 = S32×C23φ: C2/C1C2 ⊆ Out C23×C3⋊S348(C2^3xC3:S3):9C2288,1040

Non-split extensions G=N.Q with N=C23×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23×C3⋊S3).1C2 = C2×C6.D12φ: C2/C1C2 ⊆ Out C23×C3⋊S348(C2^3xC3:S3).1C2288,611
(C23×C3⋊S3).2C2 = C62.116C23φ: C2/C1C2 ⊆ Out C23×C3⋊S324(C2^3xC3:S3).2C2288,622
(C23×C3⋊S3).3C2 = C22⋊C4×C3⋊S3φ: C2/C1C2 ⊆ Out C23×C3⋊S372(C2^3xC3:S3).3C2288,737
(C23×C3⋊S3).4C2 = C2×C6.11D12φ: C2/C1C2 ⊆ Out C23×C3⋊S3144(C2^3xC3:S3).4C2288,784
(C23×C3⋊S3).5C2 = C2×C62⋊C4φ: C2/C1C2 ⊆ Out C23×C3⋊S324(C2^3xC3:S3).5C2288,941
(C23×C3⋊S3).6C2 = C22×C6.D6φ: C2/C1C2 ⊆ Out C23×C3⋊S348(C2^3xC3:S3).6C2288,972
(C23×C3⋊S3).7C2 = C23×C32⋊C4φ: C2/C1C2 ⊆ Out C23×C3⋊S348(C2^3xC3:S3).7C2288,1039
(C23×C3⋊S3).8C2 = C22×C4×C3⋊S3φ: trivial image144(C2^3xC3:S3).8C2288,1004

׿
×
𝔽